CHAPITRE 3

Thermodynamique de

sous-systemes simples

3.1 Thermalisation de deux gaz séparés

Un systeme isolé est constitué de deux sous-systemes fermés 1 et 2 séparés par
une paroi diatherme imperméable. Initialement, ils sont maintenus a tempéra-
tures Ty et Ty. Le sous-systeme 1 contient N; moles de gaz. L’énergie interne
du gaz est donnée par U; = ¢; N1 RTy, ou T est la température du gaz, R
est une constante positive et ¢; est un coefficient sans dimension. De maniere
similaire, il y a No moles de gaz dans le sous-systeme 2 et ’énergie interne du
gaz est donnée par Us = coNo R T5.

1) Déterminer la variation d’énergie interne Uy due & la thermalisation.

2) Comparer la température initiale T, du sous-systeme 2 et la température
finale T’y du systeéme si la taille du sous-systeme 2 est beaucoup plus grande
que celle du sous-systeme 1.

Solution

Les circonstances spécifiées ici sont celles du sect. 3.2. Par conséquent, 1’équi-
libre thermique est caractérisé par des températures égales pour les deux sous-
systemes. Comme le systeme est isolé, I’énergie totale U est conservée, ce qui
signifie que la valeur initiale U; de I’énergie interne totale est égale a la valeur
finale Uy. Ainsi, on a,

Ui =ciN1RTY + coNoRTy = i NyRTy + coNoRTy = Uy

ce qui implique que, , 4
ClNle + C2N2T2,L
c1N1 + 2Ny

Ty =

1) La variation d’énergie interne s’écrit,

, N T} NyTy .
AUIZCINIR(TJC—T{) :ClN1R<Cl 141 +CZ 249 _T11>

c1 N1+ caNo
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et peut étre mise sous la forme suivante,

1 | N
A — T _ i
Ul R<ClN1+02N2) ( 2 1)

2) La température finale du systéme Ty peut s'écrire,

_ 1 i, Ny
Tf_M(T2+MT1)
C2 N2

Si le sous-systeme 2 est beaucoup plus grand que le sous-systeme 1, il
contient beaucoup plus de gaz, i.e. N7 < Ny. Dans cette limite, la tempé-
rature finale du systeme 7’y est la température initiale T4 du sous-systeme
27

Ty =T;

Ainsi, la température T3 reste constante durant le processus de thermalisa-
tion. En d’autres termes, la température du grand sous-systeéme 2 ne varie
pas lorsqu’il est mis en contact avec le petit sous-systéme 1. On introduira
formellement la notion de bain thermique au chapitre suivant (sect. 4.5.1).

3.2 Thermalisation de deux substances séparées

L’entropie S d’une substance particul(i«?re s’écrit en termes de son énergie interne
1

U et du nombre de mole N comme,
RU NE
—1In |1
)+ 5 ()

S(U,V,N)=NRln (1 + NE,
ou R et Ey sont des constantes positives. Un systeme est constitué de deux sous-
systemes contenant une telle substance, avec N1 moles dans le sous-systeme 1
et Ny moles dans le sous-systeme 2. Lorsqu’ils sont mis en contact thermique,
leurs températures initiales sont 7' et T3 . Déterminer la température finale T’
du systeme.

Solution

L’équilibre est caractérisé par des températures égales pour les deux sous-
systémes (sect. 3.2). On doit & présent déterminer ’expression de la température
de cette substance. On a défini la température comme la dérivée partielle de
Iénergie interne U par rapport a Pentropie S. En prenant l'inverse de cette
relation, a l'aide de l'identité cyclique de dérivées partielles (sect. 4.7.2), on

obtient,
1_0S_ R (  NE
T 0U E U

el Carrington, Basic Thermodynamics, Oxford Science Publications (1994).
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On en tire I'expression de 1’énergie interne,
NEy
Ey 1
exp| = | —
P\&T
On applique la loi de conservation de D’énergie interne du systeéme total
(sect. 3.1), et on obtient,

U =

-1

Ny Ny
0 Ny + No N1+ Ny
=1 1
RTy ' ' ex Fo —1+ex Fo —
P\ Rry P\ Rry

3.3 Transfert thermique stationnaire entre deux blocs

Un systeme formé de deux blocs, considérés comme des systémes simples
rigides, sont en contact thermique (fig. 3.1). Le bloc 1 est maintenu & une
température T et le bloc 2 & une température Ty < T7. Un transfert de chaleur
a lieu entre les blocs en régime stationnaire.

@) ©)
(o1) (12) (20)
e B fa
— —_—l —_—
Tl T2

Fig. 3.1 Un transfert thermique a lieu entre un bloc 1 & température T et un bloc 2 &
température To.

On dénote Pégm) le transfert de chaleur de I'environnement (libellé 0) vers le

bloc 1, sz) le transfert de chaleur du bloc 1 vers le bloc 2 et Pgo) le transfert
de chaleur du bloc 2 vers I’environnement.

En régime stationnaire, montrer que les puissance thermiques exercées par
I’environnement sur le premier bloc, par le premier bloc sur le deuxieme, et par
le deuxieme bloc sur I’environnement sont égales et écrites comme,

Py = Pgn) _ sz) _ Pgo)
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(3.3) Solution

En régime stationnaire, d’apres la relation (2.20), 'entropie de chaque bloc est
constante,

31:0 et S’QZO

Les blocs sont des systemes simples. Par conséquent, le taux de production d’en-
tropie (2.23) de chaque bloc est nul. Dans ce cas, la variation d’entropie (2.18)
de chaque sous-systéme est donnée par,

(01) (12)
-

Si = =0 = pPYV=pRY
! T1(51) Q @
~ 5> — PSY (12) _ p(20)
Sp="9 "2 o9 = pUlH_
2 T5(S5) Q Q

Par conséquent,
P = Pgn) _ sz) _ Pgo)

3.4 Thermalisation de deux blocs

On considére un systeme formé de deux blocs métalliques homogenes li-
bellés 1 et 2 qui peuvent étre considérés comme des systeémes simples rigides.
Ces blocs sont constitués de Ni et No moles de métal respectivement. Ils sont
initialement séparés et ont des températures 77 et T5. Lorsqu’ils sont mis en
contact, ils atteignent progressivement 1’équilibre thermique. La température
finale du systeme est T'y. Le systeme peut étre considéré comme isolé. L’énergie
interne U; du bloc i = 1, 2 est une fonction de sa température T; et du nombre
N, de moles de substance dans le bloc,

U, = 3N, RT;

ol R est une constante positive.

1) Déterminer la température finale Ty du systéme de deux blocs a 1’équilibre
thermique.

2) Calculer la variation d’entropie AS du systéme de deux blocs lors du pro-
cessus qui ’amene a 1’équilibre thermique.

Solution

1) Etant donné que le systeéme est isolé, ’énergie interne est constante (1.30).
Par conséquent, la variation d’énergie interne AU du systéme est nulle,

AU =AU, + AU, =0
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La variation d’énergie interne de chaque bloc est donnée par,

T,

f
AU, = 3N,R dT = 3N, R (Ty — T1)
T
7,
AUQ = 3N2R dT = 3N2R (Tf - TQ)
T

Ainsi, on obtient ’expression de la température finale Ty du systeme,

T, — NiT1 + NoTh
=N N,

2) La variation d’entropie AS du systéme est exprimée comme,
AS = AS; + ASy

La variation infinitésimale d’entropie de chaque bloc s’écrit,

dU; dTy
e &1
dS T SN1R T,
dUs dTs

— —
dSs T 3N1R T

ce qui implique que la variation d’entropie de chaque bloc du processus est
de la forme,

Ts ar T
AS; = 3N,R & _3N,RIn (2L
1 1 - T 1 n(T1>

Ts ar T
ASy = 3N, R o _3N,RIn (2L
? ? /T2 T g H(T2>

Ainsi, la variation d’entropie lors du processus est donnée par,

T T
AS = 3N, RIn (Tf> + 3N, R1In (Tf)

1 2

3.5 Diffusion d’un gaz a travers une paroi perméable

On désire modéliser la diffusion d’'un gaz constitué d’une seule substance a tra-
vers une paroi perméable diatherme. On considere un systéme isolé contenant
N moles de gaz, formé de deux sous-systémes de volumes identiques séparés
par une paroi perméable rigide. Le gaz diffuse d’un sous-systeme a ’autre. Il y a
N; (t) moles de gaz dans le sous-systeme 1 et Na(t) moles dans le sous-systeme 2.
On modélise les potentiels chimiques en considérant qu’ils sont proportionnels
a la quantité de substance :

{ Ny

Ny = — 1
p(N) FA 27
{ N:

p2(N2) = 2

T FA2r
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ou 7 > 0 est un temps caractéristique de diffusion, F© > 0 le coefficient de
diffusion de Fick et £ > 0 une longueur caractéristique. Initialement, il y a Ny
moles dans le sous-systéme 1, i.e. N1(0) = Ny, et N — Ny moles dans le sous-
systeme 2, i.e. N3(0) = N — Ny. Déterminer ’évolution du nombre de moles
Ni(t) et Na(t) dans les sous-systémes 1 et 2. En déduire, le nombre de moles
dans chaque sous-systeme a 1’équilibre.

Solution

La quantité de gaz dans le systeme est égale a la somme de la quantité de gaz
dans les deux sous-systemes,

N = Ny(t) + Na(t)

D’aprés 'équation de diffusion irréversible (3.45), le taux de variation N; du
nombre de moles de gaz dans le sous-systeme 1 est donné par,

B =P (= ) = 5 () - M) =+ (M) - 5 )

L’intégrale de cette équation d’évolution s’écrit formellement,

B gy I
M e
0 1 2 0

et le résultat de cette intégration est donné par,

Ni(t)— & t
In{——F|=-=
No— 5
ce qui implique que,

jw@y:§+(w-g)@m(_j>

et vu que Na(t) = N — Ny(t), on a,

No(t) = g + (];[ - NO) exp (— i)

Ainsi, a I’équilibre, lorsque ¢ — oo,

Bl

Nﬁ@z%b@zg

ce qui signifie qu’il y a la méme quantité de gaz dans chaque sous-systeme. Par
conséquent, a I’équilibre, le systéeme est homogene.
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3.6 Amortissement mécanique par transfert de chaleur

Un systeme isolé de volume V est constitué de deux sous-systémes, notés 1
et 2, séparés par une paroi imperméable, diatherme et mobile de masse M et
de volume négligeable. Les deux sous-systémes sont & 1’équilibre thermique a
température T'. Ils sont constitués chacun de N moles de gaz parfait, ce qui
signifie que la pression p; du gaz dans le sous-systéeme ¢, son volume V;, le
nombre de moles N et la température T sont liés par I’équation p;V; = NRT
ol R est une constante positive (sect. 5.6). La masse du gaz est négligeable par
rapport a la masse de la paroi et I’énergie interne de la paroi est négligeable par
rapport a celle du gaz. Initialement, le systéeme n’est pas a I’équilibre mécanique.
On considere que la variation de volume AV entre le volume V; de chaque sous-
systeme et son volume V{ & ’équilibre mécanique est petite, i.e. AV < V.

1) Exprimer la puissance dissipée TTlg en termes de la variation de pression
entre les sous-systémes p; — po et des dérivées temporelles du volume V;
du sous-systéeme 1.

2) Déterminer ’équation d’évolution du volume V; du sous-systémes 1 a l’aide
de la condition d’évolution du deuxieme principe.

3) Compte tenu du fait que les sous-systémes sont constitués d’un gaz parfait,
a l’aide d’un développement limité au premier ordre en AV/V}, montrer que
I’équation du mouvement de la paroi est celle d’'un oscillateur harmonique
amorti,

F+2vi+wiz=0
ou z est la coordonnée du déplacement de la paroi par rapport a la position

d’équilibre. Déterminer I’expression du coefficient de frottement ~y et de la
pulsation wq des oscillations non-amorties.

4) En régime d’amortissement faible, i.e. v < wp, déterminer la période T des
oscillations amorties.

Solution

1) Comme la masse du gaz est négligeable par rapport a la masse de la paroi,
que le volume de la paroi est négligeable par rapport au volume du gaz
et que I'énergie interne de la paroi est négligeable par rapport a celle du
gaz, I'énergie du systeme est la somme de 1’énergie cinétique de la paroi de
masse M et de vitesse v, et des énergies internes Uy et Uy du gaz dans les
deux-sous-systemes,

1
E:§M'02+U1+U2
La dérivée temporelle de I’énergie interne s’écrit,
E:MU~’I'J+Ul+U2

Comme la paroi est imperméable, le nombre de moles de gaz N dans chaque
sous-systeme est constant. De plus, le systeme est a 1’équilibre thermique
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a température T. Ainsi, compte tenu de la relation (2.12), les dérivées
temporelles de I’énergie interne de chaque sous-systeme s’écrivent,

U1:T51—p1V1 et UQZTS2—102V2
Comme le systeme est isolé, I'énergie E est constante d’apres le premier
principe (1.9). Ainsi, la dérivée temporelle de I’énergie s’annule,
EZT(S1+SQ> —mVi—p Vot Mv-9=0

De plus, il n’y a pas d’échange d’entropie avec ’environnement. Par consé-
quent, compte tenu du deuxieéme principe (2.1) et de extensivité de 1’en-
tropie (3.2),

T(Sy+SQ::TS::THS
Ainsi, on obtient une expression pour la puissance dissipée qui s’écrit comme
le produit de la température et du taux de production d’entropie Ilg,

THs=p1 Vi +p2 Vo — M-

Comme le systéme est isolé, son volume V' est constant. On déduit alors la
condition suivante,

V=Vi+Vo=0 ainsi Vo=-W

On définit Vorientation positive du vecteur vitesse v de la paroi lorsque
son mouvement accroit le volume Vi du sous systeme 1, i.e. Vi > 0. En
introduisant alors un vecteur surface de la paroi A = cste colinéaire au
vecteur vitesse et dont la norme correspond & l'aire A de la surface de la
paroi, on obtient les conditions suivantes,

Vi=v-A et ainsi Vi=d- A
ce qui implique que,
M .-
M’U‘U:P‘/l‘/l

Par conséquent, la puissance dissipée devient,

Tllg = ((p1 — p2) — szl) Vi
D’apres le deuxieme principe appliqué au déplacement de la paroi interne
d’un systéme constituée de deux sous-systeme, les équations (3.30) et (3.31)
impliquent que la puissance dissipée est une forme quadratique du taux de
variation du volume du sous-systeme 1,

TTg = £V

ot £ > 0 est le coefficient de frottement thermoélastique. En identifiant
les deux expressions de la puissance dissipée TTlg et en divisant le résultat
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par Vi, on obtient une expression de la différence de pression entre les
sous-systemes en termes de V; et de Vi,
M . )

p1— PzZEV1+§V1
Comme il y a N moles de gaz dans chaque sous-systeme, le volume Vj
de chaque sous-systeme a 1’équilibre sera la moitié du volume V du sys-
téeme. Ainsi, dans la limite d’'un petit déplacement autour de la position
d’équilibre,

Vi=W+AV et Vo=Vo— AV

ou Vp =V/2 et AV « V. Comme il y a N moles de gaz parfait a tempé-
rature T dans chaque sous-systéme, en faisant un développement limité au
premier ordre en AV/Vj, on obtient,

_NRT _NRT 1 __ _NRT( AV
TV T W AV T Vo
_l’_i
Vo
NRT NRT 1 NRT AV
D2 = = ~ 1+7
oW, AV TR Vo
Vo

Par conséquent, dans cette limite,
2NRT 8NRT
—pp=——m— AV =——+— AV
b1 D2 ‘/02 V2

La variation de volume AV est le produit de l'aire A de la surface de la
paroi et du déplacement x de la paroi par rapport a la position d’équilibre.
Ainsi compte tenu du fait que Vg = cste,

AV =Azx ainsi  Vi=Ai et Vi=A#
A Taide de ces relations, I’équation du mouvement obtenue au point 2)
multipliée par A3/M devient,
n EA? n 8A2NRT
M T T MR

Cette équation décrit le mouvement d’un oscillateur harmonique amorti qui
peut étre mise sous la forme,

T z=0

FP+2vi+wiz=0
ou le coefficient de frottement est donné par,

_ A
2M

et la pulsation des oscillations non-amorties s’écrit,

8A2NRT
“o =\ "grve

v
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En régime d’amortissement fa)ible, v < wp, la pulsation des oscillations
. Ve 2
non-amorties est donnée par,

w=1/wg -t = QJ\?V V32MNRT — €2 A2V?
La période des oscillations amorties est alors,
T_ 2m _ AT MV 1
w A /32MNRT — £2 A2 V2

L’équation du mouvement oscillatoire amorti rend compte de l’atn)lortisse—
. ’ . ’ . ’ . b 3
ment viscoélastique décrit en rhéologie par le modele de Zener.

3.7 Production d’entropie par thermalisation

Dans le probleme résolu 3.4 traitant de la thermalisation de deux blocs, montrer
que dans le cas particulier o Ny = Ny = N la variation d’entropie,

Ty Ty
AS =3N;RIn (=L ) + 3N,RIn ( =L
S—3 1RH<T1)+ , n(T2>

est strictement positive.

Solution

Dans le cas particulier ot N; = Ny = N, la température finale est donnée par,

1
2

ce qui implique que la variation d’entropie peut étre mise sous la forme,

T7 T+ Ts)?
AS =3NRIn (T?P)ZSNRIH <(1+2)

Ty (Th + 1)

112 4T Ty

Comme les température initiales T7 et To sont différentes, compte tenu de
I'identité,

(T, — ) =T?+T2 - 2I'T, >0  etainsi T2+TF>2T\T
la variation d’entropie est strictement positive,

4TI\
ATVTy )

AS > 3NR1n<

comme cela devrait étre le cas pour un processus irréversible.

@ J.-Ph. Ansermet, Mécanique, Traité de physique, Presses polytechniques et universitaires

romandes, 2013, sect. 2.5.
) Clarence Zener, Elasticity and Anelasticity of Metals, The University of Chicago Press,
Chicago, 1948.
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3.8 Production d’entropie par transfert de chaleur

Un systeme isolé est constitué des deux sous-systemes, notés 1 and 2, analysés
dans le probléme résolu 3.3. En utilisant le deuxiéme principe (2.2), montrer
que dans un état stationnaire ot 77 > T5, le taux de production d’entropie Ilg
est positif lors d'un transfert de chaleur a travers les deux sous-systemes malgré
le fait que, d’apres I’équation (2.23), IIg, = IIg, = 0.

Solution

On rappelle ici que le taux de production d’entropie d’un systéme ne peut
pas simplement étre obtenu en sommant les taux de production d’entropie de
chaque sous-systeme (3.14). Le systéme est dans un état stationnaire, ce qui
implique que la dérivée temporelle de ’entropie s’annule, i.e. S =0. Ainsi,
d’apres le deuxiéme principe (2.2), le taux de production d’entropie est égal a
l'opposé du taux d’échange d’entropie, i.e.

S=Ig+1lg=0 et ainsi IIg = —1Ig

Le taux d’échange d’entropie Ig est la somme du taux d’entropie Pém) /T
sortant de ’environnement 0 et entrant dans le sous-systeme 1 et du taux d’en-
tropie — Pgo) /T sortant du sous-systéme 2 et entrant dans environnement
0, ou le signe moins caractérise une perte d’entropie. Ainsi, on obtient,

(20) (01)
q.-fe o
g =

1> T

Etant donné que 77 > Ty, le transfert de chaleur a lieu du sous-systeme 1
vers le sous-systeme 2, ainsi PSQ) > 0. Pour un transfert de chaleur station-

naire, les puissances thermiques satisfont ’identité chn) = sz) = Pgo). Par
conséquent,
1 1 (12)
Os=(=—- =) P, >0
5 (T2 T1> @

3.9 Thermalisation par radiation

Un systeme isolé est constitué de deux blocs de méme substance (fig. 3.2). Les
énergies internes des blocs 1 et 2 sont Uy = C1 Ty et Uy = Co T ou C7 et Cy
sont deux constantes positives. Deux cotés des blocs se font exactement face.
La surface de chaque coté est A et ils sont séparés par une couche d’air. On
néglige la conductivité thermique de lair. La puissance thermique radiative que
chaque bloc 7 exerce sur le bloc j, ou 7,5 = 1,2, s’écrit,

Py = A (Ti W' =1 (t)4)

ol o est un coefficient constant.
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Fig. 3.2 Deux blocs formés du méme matériau sont séparés par une couche d’air. La
convection et la conduction thermique & travers la couche d’air sont négligeables. Les blocs
atteignent un état d’équilibre thermique da au transfert de chaleur par radiation.

1) Déterminer la température finale Ty du systeme lorsqu’il atteint I’équilibre.
2) Etablir ’équation d’évolution temporelle pour T; (t) et T5 ().

3) Cousidérer le cas particulier ot C7; = Cy = C dans la limite de faibles
variations de température, i.e. Ty (¢t) = Ty +ATh (t) et To (t) = Ty + AT (t)
avec AT (t) < Ty et ATy (t) < T en tout temps. Montrer que la différence
de température AT (t) = AT (t) — AT; (t) décroit exponentiellement.

Solution

1) Compte tenu du premier principe appliqué au systeéme isolé, i.e. U = Uy +
U, = 0 = cste, on obtient la température finale a I’équilibre,

T, — C1 Ty +Cy Ty
I Ci+Cs

2) Le premier principe appliqué & chaque sous-systeme s’écrit,
U =CiTh =PSY = oA (T4 - T})
: ; 12
Uz = Co Ty = PY® = oA (T} — T3)
Ainsi, les équations d’évolution temporelle sont données par,

. cA . cA
Ty =— (Ty - 1Y) et  Th=—— (T} - T3)
Cl CQ
3) Dans le cas ou C; = Cy = C, les dérivées temporelles des variations de
température s’écrivent,

. oA

ATy = 7= (T + ATy — (T + AT3) )
. oA

ATy = 7= ((Ty + AT - () + AT) )
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Dans la limite ot ATy < Ty and ATy < T, ces résultats se réduisent a,

. 404
AT, = % T (AT, — ATY)

. 40A 4

En soustrayant ces deux équations, on obtient,

. 80A 4

ou AT = ATy — AT;. Apres intégration, on obtient,

AT (t) = AT (0) exp ( i)

ou AT (0) =T3 (0) — T3 (0) et le temps d’amortissement 7 est,

o C
*SUAT;

3.10 Isolation thermique

On modélise un batiment et son isolation comme deux sous-systémes simples
dénotés 1 et 2. L’état de chaque sous-systeme est caractérisé par sa température.
Le sous-systeme 1 représente l'isolation. Le sous-systeme 2 représente le reste du
batiment pour lequel il n’y a pas de transfert de chaleur avec I’environnement.
Le transfert irréversible de chaleur entre le sous-systeme 2 et le sous-systeme 1

est décrit par la puissance thermique Pgl) (t).

Ti(1) (1)

Fig. 3.3 Le sous-systeme 1 représente I'isolation et le sous-systéme 2 représente le reste du
batiment. Le transfert de chaleur entre ’environnement et le sous-systéme 1 est décrit par la
puissance thermique Pg (t). Le transfert de chaleur du sous-systéme 2 au sous-systéme 1 est

décrit par la puissance thermique Pgl) (t). Il n’y a pas de transfert de chaleur direct entre
I’environnement et le sous-systéme 2, ce qui est représenté par la paroi adiabatique entourant
le systeme a l'exception de la partie du sous-systéme 1 qui est exposée a ’environnement.
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Le sous-systeme 2 échange de la chaleur uniquement avec le sous-systeme 1 a
travers une paroi diatherme de surface A, d’épaisseur £ et de conductivité ther-
mique k. Cela est représenté sur la figure par une paroi adiabatique entourant
tout le systeme, a I’exception d’une partie du sous-systeme 1 qui est exposée au
transfert réversible de chaleur avec '’environnement. Ce transfert de chaleur est
décrit par la puissance thermique Pg (t). Le sous-systéme 1 a une température
T; (t), sa chaleur spécifique constante est C; et son énergie interne U s’écrit,

U1 == ClTl

Le sous-systéme 2 a une température T5, sa chaleur spécifique constante est Cy
et son énergie interne s’écrit,

U2 = CQTQ

Le sous-systeme 1 est soumis a un transfert de chaleur périodique décrit par
la puissance Py (t). Pour simplifier les calculs, on écrit la puissance thermique
Py (t) sous la forme d’une fonction complexe,

Py (t) = Pyexp (iwt)

de période,

ro

w

qui correspond typiquement & une journée. Sur le plan phénoménologique, c’est
la partie réelle de la puissance Py (t) qui décrit '’échange de chaleur entre l'en-
vironnement et le sous-systeme 1. Sous 'effet du transfert de chaleur périodique
avec l’environnement, le systéme passe d’abord par une phase transitoire puis
atteint une phase périodique, appelé régime harmonique, ou les évolutions tem-
porelles des températures complexes T} (t) et T» (t) des deux sous-systémes sont
des oscillations périodiques autour d’une température réelle Ty de méme période
que la puissance thermique Py (t). Ainsi,

Ty (t) = ATy exp (iwt) + Tp = |ATh| exp (i¢1 (t)) exp (iwt) + T

Ty (t) = ATy exp (iwt) + Ty = |ATy| exp (mg (t)) exp (iwt) + T

ou |ATy| et |AT3| sont les modules constants des amplitudes complexes des os-
cillations de température Ty (t) et T () et ¢1 et ¢o sont les angles de déphasage
de ces oscillations dans le plan complexe. Sur le plan phénoménologique, ce sont
les parties réelles des températures complexes T} (t) et T5 (¢) qui représentent
les températures physiques des deux sous-systeémes.

1) Pour une puissance thermique Py quelconque, déterminer le systéme
d’équation différentielles couplées qui décrit ’évolution des températures
Ty et Ty des deux sous-systemes.

2) Dans le cas particulier ol il n’y a pas de transfert de chaleur avec l'envi-
ronnement, i.e. Pg = 0, déterminer explicitement 1’évolution temporelle de
la différence de température Ty — T7.
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Dans le cas particulier ou il n’y a pas de transfert de chaleur avec I'envi-
ronnement, i.e. Pg = 0, déterminer le taux de production d’entropie Ilg.

Dans le régime harmonique diu au transfert de chaleur périodique avec ’en-
vironnement, en écrivant le systeme d’équations d’évolution couplées sous
forme matricielle, en déduire le module du rapport des amplitudes com-
plexes des oscillations de température |ATy/AT;| et Pangle de déphasage
A¢p = ¢ — ¢ entre ces amplitudes complexes AT, et ATj.

Solution

1)

En appliquant le premier principe (1.29) aux deux sous-systémes en absence
d’action mécanique, i.e. Pyr = 0, compte tenu du fait que le transfert de
chaleur vers le sous-systeme 1 est décrit par la somme de la puissance
thermique Pg exercée par 'environnement et la puissance thermique Pgl)
exercée par le sous-systeme 2, et le transfert de chaleur vers le sous-systeme
2 est décrit par la puissance thermique PSQ) exercée sur le sous-systeme
1, les dérivées temporelles des énergies internes des deux sous-systéemes
s’écrivent,

Ul =(C1 Tl = PQ + PC(;I)

Up = Co Ty = Py
Compte tenu de la loi de Fourier discrete (3.16), les puissances thermiques
décrivant le transfert de chaleur a travers la paroi diatherme de surface A,

d’épaisseur ¢ et de conductivité thermique k entre les deux sous-systémes
s’écrivent,

A
PYY =P = w2 -1y

Par conséquent, le systeme d’équations couplées décrivant I’évolution des
températures s’écrit,

T, = — (Ty— T
= tag o)
. Kk A
Tg_—az(Tg—Tl)

En absence de transfert de chaleur périodique avec I’environnement, i.e.
Pg =0, la différence entre les deux équations d’évolution des températures
s’écrit,

Cci Cy) ¢

En multipliant cette équation différentielle par I'intervalle de temps infini-
tésimal dt et en la divisant par la différence de température 7o — T3, on

obtient,
d(T, — Ty) 1 1\4
-1

. . 1 1\ A
TQ—le—K(+)<T2—T1>
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En définissant le temps d’amortissement comme,

__ L GG
a KA 01+02

lintégrale de ’équation différentielle de ¢/ =0 & ¢’ = ¢ s’écrit,

no)-10) T2t')—T1({¥) T

et le résultat de cette intégrale est donné par,

LWH-TiM) ¢
n (Tz (0) =T (0)> B

T

/Tz(w—n(t) d(Tz (t") = Ty (t’)) 1 /t "
= t
0

L’exponentielle de ce résultat donne 1’évolution de la différence de tempé-
rature entre les deux sous-systemes,

Ty (t) — Ty (1) = (T2 0)— T, (0)) exp (— j)

Ainsi, en absence de transfert de chaleur avec I’environnement, la différence
de température entre les sous-systemes Ts (t) — T3 (t) décroit exponentiel-
lement au cours du temps.

Compte tenu de la relation de Gibbs (2.12) et de ’équation d’évolu-
tion (2.14) appliquée & chaque sous-systéme fermé de volume constant en
absence d’action mécanique, i.e. Py = 0, la dérivée temporelle de ’entropie
de chaque sous-systeme s’écrit,

Gotpfel_ an-m

S S O A )

. 1. Py AT, Ty

52:—U2: = —K - —
T, T, ( Ty

Compte tenu du deuxiéme principe (2.1) pour un systéme adiabatiquement
fermé et de 'extensivité de 'entropie (3.2), le taux de production d’entropie
est donné par,

HS=5*1+SQ=K’?(;1— T12> (Tr - Tl)ZH?(TZTfI)QZO
Vu que les températures complexes des deux sous-systemes s’écrivent,
T (t) = ATy exp (iwt) + Tp
T5 (t) = ATy exp (iwt) + T
leurs dérivées temporelles sont données par,
Ty (t) = iw ATy exp (iwt)
Ty (t) = iw ATy exp (iwt)


jpanserm
Pencil
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Compte tenu de l'expression de la puissance thermique périodique com-
plexe,

Py (t) = Pyexp (iwt)
le systeme d’équations couplées décrivant 1’évolution des températures de-
vient,

P, A
iw ATy exp (iwt) = = exp (iwt) + L2 (AT, — ATy)exp (iwt)
Cl Cl Y4
iw ATy exp (iwt) = — Ci % (ATy, — ATy)exp (iwt)
2

En divisant ce systéme par le nombre complexe exp (iwt), on peut le mettre
sous la forme suivante,

KV'A K}A PO
w2 A — A A, = 20
(’”+cle) o it

Kk A . Kk A

Ces systeme d’équations couplées peut étre écrit sous forme matricelle,

) Kk A K A

WEE T o7 | (AT _ (P
,ié ; +£é ATQ N 0
e TG

Le déterminant de la matrice carrée de dimension 2 s’écrit,

; +£é ; +ié ,iﬁf, 2+‘ é i+i
T )\ e, v CiCy 2 Y TR e T

L’inverse du systeme matricel s’écrit alors,

. Kk A Kk A
(AT1> B 1 wre T ot P (Po)
ATz) A1 1 K K 0
_ e [ —_— = w+ = —
w” + WK 7 (Cl + C2> 02 Y Cl Y

Par conséquent, les amplitudes complexes des oscillations de température
s’écrivent,

i+ Kk A

w4 — =

B Cy 0

ATI*—wQ—&—zwﬁé L i i
L \C1  Cy
x4
Cy ¢

AT, = j Py
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Le rapport des amplitudes complexes des oscillations de température est

donné par,
) Kk A
ATl B w + 62 z
AT, Kk A
Cy l

Le module de ce rapport est donné par,

, , K2 A?

it e o

= 2 /1 c2>1
o Kk A o +/§2A2 2>

Cy ¢

ATy
ATy

Ainsi, "'amplitudes des oscillations de température est plus forte dans le
sous-systeme 1 que dans le sous-systeme 2. Cela signifie que I'isolation amor-
tit les fluctuations de la température & I'intérieur du batiment, comme on
le comprend intuitivement. Le rapport des amplitudes complexes des os-
cillations de température s’écrit en termes des angles de déphasage de ces
oscillations dans le plan complexe comme,

ﬂ = AT 62:051 = ﬂ eld1—¢2) — /1 4 w?? 2 ¢iA¢
ATQ |AT2| et$2 ATQ K2A2 2
w2z, o
=1+ 550 ((cos (A9) + isin (A9))

Les parties réelle et imaginaire de ce rapport s’écrivent,

Kk A
ATl / w2€2 072 ?
Co ¢
ATy w2z L ow wl
Im(A’I‘Q) 1+m02 SIH(A(ZS)*E*K;*ACQ
Cy ¢
La tangente de I'angle de déphasage A¢ s’écrit,
sin (A¢)  wl
tan (A¢) = ——5 = —
an (A¢) cos(Ag) kKA C:

Ainsi I'angle de déphasage est donné par,

wl
A¢ = —
¢ = arctan (/sA C’g)



