
Chapitre 3

Thermodynamique de

sous-systèmes simples

3.1 Thermalisation de deux gaz séparés

Un système isolé est constitué de deux sous-systèmes fermés 1 et 2 séparés par
une paroi diatherme imperméable. Initialement, ils sont maintenus à tempéra-
tures T i

1 et T i
2 . Le sous-système 1 contient N1 moles de gaz. L’énergie interne

du gaz est donnée par U1 = c1N1RT1, où T1 est la température du gaz, R
est une constante positive et c1 est un coefficient sans dimension. De manière
similaire, il y a N2 moles de gaz dans le sous-système 2 et l’énergie interne du
gaz est donnée par U2 = c2N2RT2.

1) Déterminer la variation d’énergie interne U1 due à la thermalisation.

2) Comparer la température initiale T i
2 du sous-système 2 et la température

finale Tf du système si la taille du sous-système 2 est beaucoup plus grande
que celle du sous-système 1.

3.1 Solution

Les circonstances spécifiées ici sont celles du sect. 3.2. Par conséquent, l’équi-
libre thermique est caractérisé par des températures égales pour les deux sous-
systèmes. Comme le système est isolé, l’énergie totale U est conservée, ce qui
signifie que la valeur initiale Ui de l’énergie interne totale est égale à la valeur
finale Uf . Ainsi, on a,

Ui = c1N1RT
i

1 + c2N2RT
i

2 = c1N1RTf + c2N2RTf = Uf

ce qui implique que,

Tf =
c1N1T

i
1 + c2N2T

i
2

c1N1 + c2N2

1) La variation d’énergie interne s’écrit,

∆U1 = c1N1R
(
Tf − T i1

)
= c1N1R

(
c1N1T

i
1 + c2N2T

i
2

c1N1 + c2N2
− T i1

)
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et peut être mise sous la forme suivante,

∆U1 = R

(
1

c1N1
+

1

c2N2

)−1 (
T i

2 − T i
1

)
2) La température finale du système Tf peut s’écrire,

Tf =
1

1 +
c1
c2

N1

N2

(
T i2 +

c1
c2

N1

N2
T i1

)

Si le sous-système 2 est beaucoup plus grand que le sous-système 1, il
contient beaucoup plus de gaz, i.e. N1 � N2. Dans cette limite, la tempé-
rature finale du système Tf est la température initiale T i2 du sous-système
2,

Tf = T i2

Ainsi, la température T i2 reste constante durant le processus de thermalisa-
tion. En d’autres termes, la température du grand sous-système 2 ne varie
pas lorsqu’il est mis en contact avec le petit sous-système 1. On introduira
formellement la notion de bain thermique au chapitre suivant (sect. 4.5.1).

3.2 Thermalisation de deux substances séparées

L’entropie S d’une substance particulière s’écrit en termes de son énergie interne
U et du nombre de mole N comme,

(1)

S (U, V,N) = NR ln

(
1 +

U

NE0

)
+
RU

E0
ln

(
1 +

NE0

U

)
où R et E0 sont des constantes positives. Un système est constitué de deux sous-
systèmes contenant une telle substance, avec N1 moles dans le sous-système 1
et N2 moles dans le sous-système 2. Lorsqu’ils sont mis en contact thermique,
leurs températures initiales sont T i

1 et T i
2 . Déterminer la température finale Tf

du système.

3.2 Solution

L’équilibre est caractérisé par des températures égales pour les deux sous-
systèmes (sect. 3.2). On doit à présent déterminer l’expression de la température
de cette substance. On a défini la température comme la dérivée partielle de
l’énergie interne U par rapport à l’entropie S. En prenant l’inverse de cette
relation, à l’aide de l’identité cyclique de dérivées partielles (sect. 4.7.2), on
obtient,

1

T
=
∂S

∂U
=

R

E0
ln

(
1 +

NE0

U

)
(1)

G. Carrington, Basic Thermodynamics, Oxford Science Publications (1994).
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On en tire l’expression de l’énergie interne,

U =
NE0

exp

(
E0

RT

)
− 1

On applique la loi de conservation de l’énergie interne du système total
(sect. 3.1), et on obtient,

E0

RTf
= ln

1 +


N1

N1 +N2

exp

(
E0

RT i
1

)
− 1

+

N1

N1 +N2

exp

(
E0

RT i
2

)
− 1


−1

3.3 Transfert thermique stationnaire entre deux blocs

Un système formé de deux blocs, considérés comme des systèmes simples
rigides, sont en contact thermique (fig. 3.1). Le bloc 1 est maintenu à une
température T1 et le bloc 2 à une température T2 < T1. Un transfert de chaleur
a lieu entre les blocs en régime stationnaire.

Fig. 3.1 Un transfert thermique a lieu entre un bloc 1 à température T1 et un bloc 2 à
température T2.

On dénote P
(01)
Q le transfert de chaleur de l’environnement (libellé 0) vers le

bloc 1, P
(12)
Q le transfert de chaleur du bloc 1 vers le bloc 2 et P

(20)
Q le transfert

de chaleur du bloc 2 vers l’environnement.

En régime stationnaire, montrer que les puissance thermiques exercées par
l’environnement sur le premier bloc, par le premier bloc sur le deuxième, et par
le deuxième bloc sur l’environnement sont égales et écrites comme,

PQ ≡ P (01)
Q = P

(12)
Q = P

(20)
Q
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3.3 Solution

En régime stationnaire, d’après la relation (2.20), l’entropie de chaque bloc est
constante,

Ṡ1 = 0 et Ṡ2 = 0

Les blocs sont des systèmes simples. Par conséquent, le taux de production d’en-
tropie (2.23) de chaque bloc est nul. Dans ce cas, la variation d’entropie (2.18)
de chaque sous-système est donnée par,

Ṡ1 =
P

(01)
Q − P

(12)
Q

T1(S1)
= 0 ⇒ P

(01)
Q = P

(12)
Q

Ṡ2 =
P

(12)
Q − P

(20)
Q

T2(S2)
= 0 ⇒ P

(12)
Q = P

(20)
Q

Par conséquent,

PQ ≡ P (01)
Q = P

(12)
Q = P

(20)
Q

3.4 Thermalisation de deux blocs

On considère un système formé de deux blocs métalliques homogènes li-
bellés 1 et 2 qui peuvent être considérés comme des systèmes simples rigides.
Ces blocs sont constitués de N1 et N2 moles de métal respectivement. Ils sont
initialement séparés et ont des températures T1 et T2. Lorsqu’ils sont mis en
contact, ils atteignent progressivement l’équilibre thermique. La température
finale du système est Tf . Le système peut être considéré comme isolé. L’énergie
interne Ui du bloc i = 1, 2 est une fonction de sa température Ti et du nombre
Ni de moles de substance dans le bloc,

Ui = 3NiRTi

où R est une constante positive.

1) Déterminer la température finale Tf du système de deux blocs à l’équilibre
thermique.

2) Calculer la variation d’entropie ∆S du système de deux blocs lors du pro-
cessus qui l’amène à l’équilibre thermique.

3.4 Solution

1) Etant donné que le système est isolé, l’énergie interne est constante (1.30).
Par conséquent, la variation d’énergie interne ∆U du système est nulle,

∆U = ∆U1 + ∆U2 = 0
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La variation d’énergie interne de chaque bloc est donnée par,

∆U1 = 3N1R

∫ Tf

T1

dT = 3N1R (Tf − T1)

∆U2 = 3N2R

∫ Tf

T2

dT = 3N2R (Tf − T2)

Ainsi, on obtient l’expression de la température finale Tf du système,

Tf =
N1T1 +N2T2

N1 +N2

2) La variation d’entropie ∆S du système est exprimée comme,

∆S = ∆S1 + ∆S2

La variation infinitésimale d’entropie de chaque bloc s’écrit,

dS1 =
dU1

T1
= 3N1R

dT1

T1

dS2 =
dU2

T2
= 3N1R

dT2

T2

ce qui implique que la variation d’entropie de chaque bloc du processus est
de la forme,

∆S1 = 3N1R

∫ Tf

T1

dT

T
= 3N1R ln

(
Tf
T1

)
∆S2 = 3N2R

∫ Tf

T2

dT

T
= 3N2R ln

(
Tf
T2

)
Ainsi, la variation d’entropie lors du processus est donnée par,

∆S = 3N1R ln

(
Tf
T1

)
+ 3N2R ln

(
Tf
T2

)

3.5 Diffusion d’un gaz à travers une paroi perméable

On désire modéliser la diffusion d’un gaz constitué d’une seule substance à tra-
vers une paroi perméable diatherme. On considère un système isolé contenant
N moles de gaz, formé de deux sous-systèmes de volumes identiques séparés
par une paroi perméable rigide. Le gaz diffuse d’un sous-système à l’autre. Il y a
N1(t) moles de gaz dans le sous-système 1 et N2(t) moles dans le sous-système 2.
On modélise les potentiels chimiques en considérant qu’ils sont proportionnels
à la quantité de substance :

µ1(N1) =
`

FA

N1

2τ

µ2(N2) =
`

FA

N2

2τ
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où τ > 0 est un temps caractéristique de diffusion, F > 0 le coefficient de
diffusion de Fick et ` > 0 une longueur caractéristique. Initialement, il y a N0

moles dans le sous-système 1, i.e. N1(0) = N0, et N − N0 moles dans le sous-
système 2, i.e. N2(0) = N − N0. Déterminer l’évolution du nombre de moles
N1(t) et N2(t) dans les sous-systèmes 1 et 2. En déduire, le nombre de moles
dans chaque sous-système à l’équilibre.

3.5 Solution

La quantité de gaz dans le système est égale à la somme de la quantité de gaz
dans les deux sous-systèmes,

N = N1(t) +N2(t)

D’après l’équation de diffusion irréversible (3.45), le taux de variation Ṅ1 du
nombre de moles de gaz dans le sous-système 1 est donné par,

Ṅ1 = F
A

`

(
µ2 − µ1

)
=

1

2τ
(N2(t)− N1(t)) = − 1

τ

(
N1(t)− N

2

)
L’intégrale de cette équation d’évolution s’écrit formellement,∫ N1(t)

N0

dN ′1
N ′1 − N

2

= − 1

τ

∫ t

0

dt′

et le résultat de cette intégration est donné par,

ln

(
N1(t)− N

2

N0 − N
2

)
= − t

τ

ce qui implique que,

N1(t) =
N

2
+

(
N0 −

N

2

)
exp

(
− t

τ

)
et vu que N2(t) = N − N1(t), on a,

N2(t) =
N

2
+

(
N

2
− N0

)
exp

(
− t

τ

)
Ainsi, à l’équilibre, lorsque t→∞,

N1(∞) = N2(∞) =
N

2

ce qui signifie qu’il y a la même quantité de gaz dans chaque sous-système. Par
conséquent, à l’équilibre, le système est homogène.
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3.6 Amortissement mécanique par transfert de chaleur

Un système isolé de volume V est constitué de deux sous-systèmes, notés 1
et 2, séparés par une paroi imperméable, diatherme et mobile de masse M et
de volume négligeable. Les deux sous-systèmes sont à l’équilibre thermique à
température T . Ils sont constitués chacun de N moles de gaz parfait, ce qui
signifie que la pression pi du gaz dans le sous-système i, son volume Vi, le
nombre de moles N et la température T sont liés par l’équation piVi = NRT
où R est une constante positive (sect. 5.6). La masse du gaz est négligeable par
rapport à la masse de la paroi et l’énergie interne de la paroi est négligeable par
rapport à celle du gaz. Initialement, le système n’est pas à l’équilibre mécanique.
On considère que la variation de volume ∆V entre le volume Vi de chaque sous-
système et son volume V0 à l’équilibre mécanique est petite, i.e. ∆V � V0.

1) Exprimer la puissance dissipée TΠS en termes de la variation de pression
entre les sous-systèmes p1 − p2 et des dérivées temporelles du volume V1

du sous-système 1.

2) Déterminer l’équation d’évolution du volume V1 du sous-systèmes 1 à l’aide
de la condition d’évolution du deuxième principe.

3) Compte tenu du fait que les sous-systèmes sont constitués d’un gaz parfait,
à l’aide d’un développement limité au premier ordre en ∆V/V0, montrer que
l’équation du mouvement de la paroi est celle d’un oscillateur harmonique
amorti,

ẍ+ 2 γ ẋ+ ω2
0 x = 0

où x est la coordonnée du déplacement de la paroi par rapport à la position
d’équilibre. Déterminer l’expression du coefficient de frottement γ et de la
pulsation ω0 des oscillations non-amorties.

4) En régime d’amortissement faible, i.e. γ < ω0, déterminer la période T des
oscillations amorties.

3.6 Solution

1) Comme la masse du gaz est négligeable par rapport à la masse de la paroi,
que le volume de la paroi est négligeable par rapport au volume du gaz
et que l’énergie interne de la paroi est négligeable par rapport à celle du
gaz, l’énergie du système est la somme de l’énergie cinétique de la paroi de
masse M et de vitesse v, et des énergies internes U1 et U2 du gaz dans les
deux-sous-systèmes,

E =
1

2
M v2 + U1 + U2

La dérivée temporelle de l’énergie interne s’écrit,

Ė = M v · v̇ + U̇1 + U̇2

Comme la paroi est imperméable, le nombre de moles de gaz N dans chaque
sous-système est constant. De plus, le système est à l’équilibre thermique
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à température T . Ainsi, compte tenu de la relation (2.12), les dérivées
temporelles de l’énergie interne de chaque sous-système s’écrivent,

U̇1 = T Ṡ1 − p1 V̇1 et U̇2 = T Ṡ2 − p2 V̇2

Comme le système est isolé, l’énergie E est constante d’après le premier
principe (1.9). Ainsi, la dérivée temporelle de l’énergie s’annule,

Ė = T
(
Ṡ1 + Ṡ2

)
− p1 V̇1 − p2 V̇2 +M v · v̇ = 0

De plus, il n’y a pas d’échange d’entropie avec l’environnement. Par consé-
quent, compte tenu du deuxième principe (2.1) et de l’extensivité de l’en-
tropie (3.2),

T
(
Ṡ1 + Ṡ2

)
= T Ṡ = TΠS

Ainsi, on obtient une expression pour la puissance dissipée qui s’écrit comme
le produit de la température et du taux de production d’entropie ΠS ,

TΠS = p1 V̇1 + p2 V̇2 − M v · v̇

Comme le système est isolé, son volume V est constant. On déduit alors la
condition suivante,

V̇ = V̇1 + V̇2 = 0 ainsi V̇2 = − V̇1

On définit l’orientation positive du vecteur vitesse v de la paroi lorsque
son mouvement accrôıt le volume V1 du sous système 1, i.e. V̇1 > 0. En
introduisant alors un vecteur surface de la paroi A = cste colinéaire au
vecteur vitesse et dont la norme correspond à l’aire A de la surface de la
paroi, on obtient les conditions suivantes,

V̇1 = v ·A et ainsi V̈1 = v̇ ·A

ce qui implique que,

M v · v̇ =
M

A2
V̇1 V̈1

Par conséquent, la puissance dissipée devient,

TΠS =

(
(p1 − p2)− M

A2
V̈1

)
V̇1

2) D’après le deuxième principe appliqué au déplacement de la paroi interne
d’un système constituée de deux sous-système, les équations (3.30) et (3.31)
impliquent que la puissance dissipée est une forme quadratique du taux de
variation du volume du sous-système 1,

TΠS = ξ V̇ 2
1

où ξ > 0 est le coefficient de frottement thermoélastique. En identifiant
les deux expressions de la puissance dissipée TΠS et en divisant le résultat
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par V̇1, on obtient une expression de la différence de pression entre les
sous-systèmes en termes de V̇1 et de V̈1,

p1 − p2 =
M

A2
V̈1 + ξ V̇1

3) Comme il y a N moles de gaz dans chaque sous-système, le volume V0

de chaque sous-système à l’équilibre sera la moitié du volume V du sys-
tème. Ainsi, dans la limite d’un petit déplacement autour de la position
d’équilibre,

V1 = V0 + ∆V et V2 = V0 − ∆V

où V0 = V/2 et ∆V � V0. Comme il y a N moles de gaz parfait à tempé-
rature T dans chaque sous-système, en faisant un développement limité au
premier ordre en ∆V/V0, on obtient,

p1 =
NRT

V1
=
NRT

V0

1

1 +
∆V

V0

' NRT

V0

(
1− ∆V

V0

)

p2 =
NRT

V2
=
NRT

V0

1

1− ∆V

V0

' NRT

V0

(
1 +

∆V

V0

)

Par conséquent, dans cette limite,

p1 − p2 = − 2NRT

V 2
0

∆V = − 8NRT

V 2
∆V

La variation de volume ∆V est le produit de l’aire A de la surface de la
paroi et du déplacement x de la paroi par rapport à la position d’équilibre.
Ainsi compte tenu du fait que V0 = cste,

∆V = Ax ainsi V̇1 = A ẋ et V̈1 = A ẍ

A l’aide de ces relations, l’équation du mouvement obtenue au point 2)
multipliée par A3/M devient,

ẍ+
ξ A2

M
ẋ+

8A2NRT

M V 2
x = 0

Cette équation décrit le mouvement d’un oscillateur harmonique amorti qui
peut être mise sous la forme,

ẍ+ 2 γ ẋ+ ω2
0 x = 0

où le coefficient de frottement est donné par,

γ =
ξ A2

2M

et la pulsation des oscillations non-amorties s’écrit,

ω0 =

√
8A2NRT

M V 2
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En régime d’amortissement faible, γ < ω0, la pulsation des oscillations
non-amorties est donnée par,

(2)

ω =
√
ω2

0 − γ2 =
A

2M V

√
32MNRT − ξ2A2 V 2

La période des oscillations amorties est alors,

T =
2π

ω
=

4πM V

A

1√
32MNRT − ξ2A2 V 2

L’équation du mouvement oscillatoire amorti rend compte de l’amortisse-
ment viscoélastique décrit en rhéologie par le modèle de Zener .

(3)

3.7 Production d’entropie par thermalisation

Dans le problème résolu 3.4 traitant de la thermalisation de deux blocs, montrer
que dans le cas particulier où N1 = N2 = N la variation d’entropie,

∆S = 3N1R ln

(
Tf
T1

)
+ 3N2R ln

(
Tf
T2

)
est strictement positive.

3.7 Solution

Dans le cas particulier où N1 = N2 = N , la température finale est donnée par,

Tf =
1

2
(T1 + T2)

ce qui implique que la variation d’entropie peut être mise sous la forme,

∆S = 3NR ln

(
T 2
f

T1T2

)
= 3NR ln

(
(T1 + T2)

2

4T1T2

)
Comme les température initiales T1 et T2 sont différentes, compte tenu de
l’identité,

(T1 − T2)
2

= T 2
1 + T 2

2 − 2T1T2 > 0 et ainsi T 2
1 + T 2

2 > 2T1T2

la variation d’entropie est strictement positive,

∆S > 3NR ln

(
4T1T2

4T1T2

)
= 0

comme cela devrait être le cas pour un processus irréversible.

(2)
J.-Ph. Ansermet, Mécanique, Traité de physique, Presses polytechniques et universitaires
romandes, 2013, sect. 2.5.

(3)
Clarence Zener, Elasticity and Anelasticity of Metals, The University of Chicago Press,
Chicago, 1948.



Production d’entropie par transfert de chaleur 11

3.8 Production d’entropie par transfert de chaleur

Un système isolé est constitué des deux sous-systèmes, notés 1 and 2, analysés
dans le problème résolu 3.3. En utilisant le deuxième principe (2.2), montrer
que dans un état stationnaire où T1 > T2, le taux de production d’entropie ΠS

est positif lors d’un transfert de chaleur à travers les deux sous-systèmes malgré
le fait que, d’après l’équation (2.23), ΠS1

= ΠS2
= 0.

3.8 Solution

On rappelle ici que le taux de production d’entropie d’un système ne peut
pas simplement être obtenu en sommant les taux de production d’entropie de
chaque sous-système (3.14). Le système est dans un état stationnaire, ce qui
implique que la dérivée temporelle de l’entropie s’annule, i.e. Ṡ = 0. Ainsi,
d’après le deuxième principe (2.2), le taux de production d’entropie est égal à
l’opposé du taux d’échange d’entropie, i.e.

Ṡ = IS + ΠS = 0 et ainsi ΠS = − IS

Le taux d’échange d’entropie IS est la somme du taux d’entropie P
(01)
Q /T1

sortant de l’environnement 0 et entrant dans le sous-système 1 et du taux d’en-

tropie −P (20)
Q /T2 sortant du sous-système 2 et entrant dans l’environnement

0, où le signe moins caractérise une perte d’entropie. Ainsi, on obtient,

ΠS =
P

(20)
Q

T2
−
P

(01)
Q

T1

Etant donné que T1 > T2, le transfert de chaleur a lieu du sous-système 1

vers le sous-système 2, ainsi P
(12)
Q > 0. Pour un transfert de chaleur station-

naire, les puissances thermiques satisfont l’identité P
(01)
Q = P

(12)
Q = P

(20)
Q . Par

conséquent,

ΠS =

(
1

T2
− 1

T1

)
P

(12)
Q > 0

3.9 Thermalisation par radiation

Un système isolé est constitué de deux blocs de même substance (fig. 3.2). Les
énergies internes des blocs 1 et 2 sont U1 = C1 T1 et U2 = C2 T2 où C1 et C2

sont deux constantes positives. Deux côtés des blocs se font exactement face.
La surface de chaque côté est A et ils sont séparés par une couche d’air. On
néglige la conductivité thermique de l’air. La puissance thermique radiative que
chaque bloc i exerce sur le bloc j, où i, j = 1, 2, s’écrit,

P
(ij)
Q = σA

(
Ti (t)

4 − Tj (t)
4
)

où σ est un coefficient constant.
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T2(t)T1(t) A

Fig. 3.2 Deux blocs formés du même matériau sont séparés par une couche d’air. La
convection et la conduction thermique à travers la couche d’air sont négligeables. Les blocs
atteignent un état d’équilibre thermique dû au transfert de chaleur par radiation.

1) Déterminer la température finale Tf du système lorsqu’il atteint l’équilibre.

2) Etablir l’équation d’évolution temporelle pour T1 (t) et T2 (t).

3) Considérer le cas particulier où C1 = C2 = C dans la limite de faibles
variations de température, i.e. T1 (t) = Tf +∆T1 (t) et T2 (t) = Tf +∆T2 (t)
avec ∆T1 (t)� Tf et ∆T2 (t)� Tf en tout temps. Montrer que la différence
de température ∆T (t) = ∆T1 (t)− ∆T2 (t) décrôıt exponentiellement.

3.9 Solution

1) Compte tenu du premier principe appliqué au système isolé, i.e. U = U1 +
U2 = 0 = cste, on obtient la température finale à l’équilibre,

Tf =
C1 T1 + C2 T2

C1 + C2

2) Le premier principe appliqué à chaque sous-système s’écrit,

U̇1 = C1 Ṫ1 = P
(21)
Q = σA

(
T 4

2 − T 4
1

)
U̇2 = C2 Ṫ2 = P

(12)
Q = σA

(
T 4

1 − T 4
2

)
Ainsi, les équations d’évolution temporelle sont données par,

Ṫ1 =
σA

C1

(
T 4

2 − T 4
1

)
et Ṫ2 =

σA

C2

(
T 4

1 − T 4
2

)
3) Dans le cas où C1 = C2 = C, les dérivées temporelles des variations de

température s’écrivent,

∆Ṫ1 =
σA

C

(
(Tf + ∆T2)

4 − (Tf + ∆T1)
4
)

∆Ṫ2 =
σA

C

(
(Tf + ∆T1)

4 − (Tf + ∆T2)
4
)
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Dans la limite où ∆T1 � Tf and ∆T2 � Tf , ces résultats se réduisent à,

∆Ṫ1 =
4σA

C
T 3
f (∆T2 − ∆T1)

∆Ṫ2 =
4σA

C
T 3
f (∆T1 − ∆T2)

En soustrayant ces deux équations, on obtient,

∆Ṫ =
8σA

C
T 3
f ∆T

où ∆T = ∆T1 − ∆T2. Après intégration, on obtient,

∆T (t) = ∆T (0) exp

(
− t

τ

)
où ∆T (0) = T1 (0)− T2 (0) et le temps d’amortissement τ est,

τ =
C

8σAT 3
f

3.10 Isolation thermique

On modélise un bâtiment et son isolation comme deux sous-systèmes simples
dénotés 1 et 2. L’état de chaque sous-système est caractérisé par sa température.
Le sous-système 1 représente l’isolation. Le sous-système 2 représente le reste du
bâtiment pour lequel il n’y a pas de transfert de chaleur avec l’environnement.
Le transfert irréversible de chaleur entre le sous-système 2 et le sous-système 1

est décrit par la puissance thermique P
(21)
Q (t).

PQ (t) PQ
(21)(t)

T1(t) T2(t)

Fig. 3.3 Le sous-système 1 représente l’isolation et le sous-système 2 représente le reste du
bâtiment. Le transfert de chaleur entre l’environnement et le sous-système 1 est décrit par la
puissance thermique PQ (t). Le transfert de chaleur du sous-système 2 au sous-système 1 est

décrit par la puissance thermique P
(21)
Q (t). Il n’y a pas de transfert de chaleur direct entre

l’environnement et le sous-système 2, ce qui est représenté par la paroi adiabatique entourant
le système à l’exception de la partie du sous-système 1 qui est exposée à l’environnement.
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Le sous-système 2 échange de la chaleur uniquement avec le sous-système 1 à
travers une paroi diatherme de surface A, d’épaisseur ` et de conductivité ther-
mique κ. Cela est représenté sur la figure par une paroi adiabatique entourant
tout le système, à l’exception d’une partie du sous-système 1 qui est exposée au
transfert réversible de chaleur avec l’environnement. Ce transfert de chaleur est
décrit par la puissance thermique PQ (t). Le sous-système 1 a une température
T1 (t), sa chaleur spécifique constante est C1 et son énergie interne U1 s’écrit,

U1 = C1 T1

Le sous-système 2 a une température T2, sa chaleur spécifique constante est C2

et son énergie interne s’écrit,

U2 = C2 T2

Le sous-système 1 est soumis à un transfert de chaleur périodique décrit par
la puissance PQ (t). Pour simplifier les calculs, on écrit la puissance thermique
PQ (t) sous la forme d’une fonction complexe,

PQ (t) = P0 exp (iωt)

de période,

T =
2π

ω

qui correspond typiquement à une journée. Sur le plan phénoménologique, c’est
la partie réelle de la puissance PQ (t) qui décrit l’échange de chaleur entre l’en-
vironnement et le sous-système 1. Sous l’effet du transfert de chaleur périodique
avec l’environnement, le système passe d’abord par une phase transitoire puis
atteint une phase périodique, appelé régime harmonique, où les évolutions tem-
porelles des températures complexes T1 (t) et T2 (t) des deux sous-systèmes sont
des oscillations périodiques autour d’une température réelle T0 de même période
que la puissance thermique PQ (t). Ainsi,

T1 (t) = ∆T1 exp (iωt) + T0 = |∆T1| exp
(
iφ1 (t)

)
exp (iωt) + T0

T2 (t) = ∆T2 exp (iωt) + T0 = |∆T2| exp
(
iφ2 (t)

)
exp (iωt) + T0

où |∆T1| et |∆T2| sont les modules constants des amplitudes complexes des os-
cillations de température T1 (t) et T2 (t) et φ1 et φ2 sont les angles de déphasage
de ces oscillations dans le plan complexe. Sur le plan phénoménologique, ce sont
les parties réelles des températures complexes T1 (t) et T2 (t) qui représentent
les températures physiques des deux sous-systèmes.

1) Pour une puissance thermique PQ quelconque, déterminer le système
d’équation différentielles couplées qui décrit l’évolution des températures
T1 et T2 des deux sous-systèmes.

2) Dans le cas particulier où il n’y a pas de transfert de chaleur avec l’envi-
ronnement, i.e. PQ = 0, déterminer explicitement l’évolution temporelle de
la différence de température T2 − T1.
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3) Dans le cas particulier où il n’y a pas de transfert de chaleur avec l’envi-
ronnement, i.e. PQ = 0, déterminer le taux de production d’entropie ΠS .

4) Dans le régime harmonique dû au transfert de chaleur périodique avec l’en-
vironnement, en écrivant le système d’équations d’évolution couplées sous
forme matricielle, en déduire le module du rapport des amplitudes com-
plexes des oscillations de température |∆T2/∆T1| et l’angle de déphasage
∆φ = φ2 − φ1 entre ces amplitudes complexes ∆T2 et ∆T1.

3.10 Solution

1) En appliquant le premier principe (1.29) aux deux sous-systèmes en absence
d’action mécanique, i.e. PW = 0, compte tenu du fait que le transfert de
chaleur vers le sous-système 1 est décrit par la somme de la puissance

thermique PQ exercée par l’environnement et la puissance thermique P
(21)
Q

exercée par le sous-système 2, et le transfert de chaleur vers le sous-système

2 est décrit par la puissance thermique P
(12)
Q exercée sur le sous-système

1, les dérivées temporelles des énergies internes des deux sous-systèmes
s’écrivent,

U̇1 = C1 Ṫ1 = PQ + P
(21)
Q

U̇2 = C2 Ṫ2 = P
(12)
Q

Compte tenu de la loi de Fourier discrète (3.16), les puissances thermiques
décrivant le transfert de chaleur à travers la paroi diatherme de surface A,
d’épaisseur ` et de conductivité thermique κ entre les deux sous-systèmes
s’écrivent,

P
(12)
Q = −P (21)

Q = −κ A
`

(T2 − T1)

Par conséquent, le système d’équations couplées décrivant l’évolution des
températures s’écrit,

Ṫ1 =
PQ
C1

+
κ

C1

A

`
(T2 − T1)

Ṫ2 = − κ

C2

A

`
(T2 − T1)

2) En absence de transfert de chaleur périodique avec l’environnement, i.e.
PQ = 0, la différence entre les deux équations d’évolution des températures
s’écrit,

Ṫ2 − Ṫ1 = −κ
(

1

C1
+

1

C2

)
A

`
(T2 − T1)

En multipliant cette équation différentielle par l’intervalle de temps infini-
tésimal dt et en la divisant par la différence de température T2 − T1, on
obtient,

d (T2 − T1)

T2 − T1
= −κ

(
1

C1
+

1

C2

)
A

`
dt
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En définissant le temps d’amortissement comme,

τ =
`

κA

C1C2

C1 + C2

l’intégrale de l’équation différentielle de t′ = 0 à t′ = t s’écrit,

∫ T2(t)−T1(t)

T2(0)−T1(0)

d
(
T2 (t′)− T1 (t′)

)
T2 (t′)− T1 (t′)

= − 1

τ

∫ t

0

dt′

et le résultat de cette intégrale est donné par,

ln

(
T2 (t)− T1 (t)

T2 (0)− T1 (0)

)
= − t

τ

L’exponentielle de ce résultat donne l’évolution de la différence de tempé-
rature entre les deux sous-systèmes,

T2 (t)− T1 (t) =
(
T2 (0)− T1 (0)

)
exp

(
− t

τ

)
Ainsi, en absence de transfert de chaleur avec l’environnement, la différence
de température entre les sous-systèmes T2 (t)− T1 (t) décrôıt exponentiel-
lement au cours du temps.

3) Compte tenu de la relation de Gibbs (2.12) et de l’équation d’évolu-
tion (2.14) appliquée à chaque sous-système fermé de volume constant en
absence d’action mécanique, i.e. PW = 0, la dérivée temporelle de l’entropie
de chaque sous-système s’écrit,

Ṡ1 =
1

T1
U̇1 =

P
(21)
Q

T1
= κ

A

`

T2 − T1

T1

Ṡ2 =
1

T2
U̇2 =

P
(12)
Q

T2
= −κ A

`

T2 − T1

T1

Compte tenu du deuxième principe (2.1) pour un système adiabatiquement
fermé et de l’extensivité de l’entropie (3.2), le taux de production d’entropie
est donné par,

ΠS = Ṡ1 + Ṡ2 = κ
A

`

(
1

T1
− 1

T2

)
(T2 − T1) = κ

A

`

(T2 − T1)
2

T1T2
> 0

4) Vu que les températures complexes des deux sous-systèmes s’écrivent,

T1 (t) = ∆T1 exp (iωt) + T0

T2 (t) = ∆T2 exp (iωt) + T0

leurs dérivées temporelles sont données par,

Ṫ1 (t) = iω∆T1 exp (iωt)

Ṫ2 (t) = iω∆T2 exp (iωt)

jpanserm
Pencil
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Compte tenu de l’expression de la puissance thermique périodique com-
plexe,

PQ (t) = P0 exp (iωt)

le système d’équations couplées décrivant l’évolution des températures de-
vient,

iω∆T1 exp (iωt) =
P0

C1
exp (iωt) +

κ

C1

A

`
(∆T2 − ∆T1) exp (iωt)

iω∆T2 exp (iωt) = − κ

C2

A

`
(∆T2 − ∆T1) exp (iωt)

En divisant ce système par le nombre complexe exp (iωt), on peut le mettre
sous la forme suivante,(

iω +
κ

C1

A

`

)
∆T1 −

κ

C1

A

`
∆T2 =

P0

C1

− κ

C2

A

`
∆T1 +

(
iω +

κ

C2

A

`

)
∆T2 = 0

Ces système d’équations couplées peut être écrit sous forme matricelle,iω +
κ

C1

A

`
− κ

C1

A

`

− κ

C2

A

`
iω +

κ

C2

A

`

(∆T1

∆T2

)
=

(
P0

0

)

Le déterminant de la matrice carrée de dimension 2 s’écrit,(
iω +

κ

C1

A

`

)(
iω +

κ

C2

A

`

)
− κ2

C1 C2

A2

`2
= −ω2 + iωκ

A

`

(
1

C1
+

1

C2

)
L’inverse du système matricel s’écrit alors,

(
∆T1

∆T2

)
=

1

−ω2 + iωκ
A

`

(
1

C1
+

1

C2

)
iω +

κ

C2

A

`

κ

C1

A

`
κ

C2

A

`
iω +

κ

C1

A

`

(P0

0

)

Par conséquent, les amplitudes complexes des oscillations de température
s’écrivent,

∆T1 =
iω +

κ

C2

A

`

−ω2 + iωκ
A

`

(
1

C1
+

1

C2

) P0

∆T2 =

κ

C2

A

`

−ω2 + iωκ
A

`

(
1

C1
+

1

C2

) P0
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Le rapport des amplitudes complexes des oscillations de température est
donné par,

∆T1

∆T2
=
iω +

κ

C2

A

`
κ

C2

A

`

Le module de ce rapport est donné par,

∣∣∣∣∆T1

∆T2

∣∣∣∣ =

√
ω2 +

κ2

C2
2

A2

`2

κ

C2

A

`

=

√
1 +

ω2`2

κ2A2
C2

2 > 1

Ainsi, l’amplitudes des oscillations de température est plus forte dans le
sous-système 1 que dans le sous-système 2. Cela signifie que l’isolation amor-
tit les fluctuations de la température à l’intérieur du bâtiment, comme on
le comprend intuitivement. Le rapport des amplitudes complexes des os-
cillations de température s’écrit en termes des angles de déphasage de ces
oscillations dans le plan complexe comme,

∆T1

∆T2
=
|∆T1|
|∆T2|

eiφ1

eiφ2
=

∣∣∣∣∆T1

∆T2

∣∣∣∣ ei(φ1−φ2) =

√
1 +

ω2`2

κ2A2
C2

2 e
i∆φ

=

√
1 +

ω2`2

κ2A2
C2

2

(
cos (∆φ) + i sin (∆φ)

)
Les parties réelle et imaginaire de ce rapport s’écrivent,

Re

(
∆T1

∆T2

)
=

√
1 +

ω2`2

κ2A2
C2

2 cos (∆φ) =

κ

C2

A

`
κ

C2

A

`

= 1

Im

(
∆T1

∆T2

)
=

√
1 +

ω2`2

κ2A2
C2

2 sin (∆φ) =
ω
κ

C2

A

`

=
ω`

κA
C2

La tangente de l’angle de déphasage ∆φ s’écrit,

tan (∆φ) =
sin (∆φ)

cos (∆φ)
=
ω`

κA
C2

Ainsi l’angle de déphasage est donné par,

∆φ = arctan

(
ω`

κA
C2

)


